Metalens works in the visible spectrum, sees smaller than a wavelength of light

High efficiency ultra-thin planar lens could replace heavy, bulky lenses in smart phones, cameras and telescopes

Curved lenses, like those in cameras or telescopes, are stacked in order to reduce distortions and resolve a clear image.  That’s why high-power microscopes are so big and telephoto lenses so long.

While lens technology has come a long way, it is still difficult to make a compact and thin lens (rub a finger over the back of a cellphone and you’ll get a sense of how difficult). But what if you could replace those stacks with a single flat — or planar — lens?

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have demonstrated the first planar lens that works with high efficiency within the visible spectrum of light — covering the whole range of colors from red to blue. The lens can resolve nanoscale features separated by distances smaller than the wavelength of light. It uses an ultrathin array of tiny waveguides, known as a metasurface, which bends light as it passes through.

Read the full story